THE SQL Server Blog Spot on the Web

Welcome to SQLblog.com - The SQL Server blog spot on the web Sign in | |
in Search

Browse by Tags

All Tags » SQL Server » Azure ML » statistics   (RSS)
  • Data Mining Algorithms – Logistic Regression

    It’s been awhile since I wrote the last blog on the data mining / machine learning algorithms. I described the Neural Network algorithm. In addition, it is a good time to write another post in order to remind the readers of the two upcoming seminars about the algorithms I have in Oslo, Friday, September 2nd, 2016, and in Cambridge, Thursday, ...
    Posted to Dejan Sarka (Weblog) by Dejan Sarka on August 31, 2016
  • Data Mining Algorithms – Neural Network

    A neural network is a powerful data modeling tool that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform "intelligent" tasks similar to those performed by the human brain. Neural ...
    Posted to Dejan Sarka (Weblog) by Dejan Sarka on January 26, 2016
  • Data Mining Algorithms – Naive Bayes

    I am continuing with my data mining and machine learning algorithms series. Naive Bayes is a nice algorithm for classification and prediction. It calculates probabilities for each possible state of the input attribute, given each state of the predictable attribute, which can later be used to predict an outcome of the predicted attribute based on ...
    Posted to Dejan Sarka (Weblog) by Dejan Sarka on September 9, 2015
  • Data Mining Algorithms – K-Means Clustering

    Hierarchical clustering could be very useful because it is easy to see the optimal number of clusters in a dendrogram and because the dendrogram visualizes the clusters and the process of building of that clusters. However, hierarchical methods don’t scale well. Just imagine how cluttered a dendrogram would be if 10,000 cases would be shown on ...
    Posted to Dejan Sarka (Weblog) by Dejan Sarka on April 17, 2015
Privacy Statement