

Browse by Tags
All Tags » Data Mining » supervised methods (RSS)

A neural network is a powerful data modeling tool that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform "intelligent" tasks similar to those performed by the human brain. Neural ...

Decision Trees is a directed technique. Your target variable is the one that holds information about a particular decision, divided into a few discrete and broad categories (yes / no; liked / partially liked / disliked, etc.). You are trying to explain this decision using other gleaned information saved in other variables (demographic data, ...

I am continuing with my data mining and machine learning algorithms series. Naive Bayes is a nice algorithm for classification and prediction.
It calculates probabilities for each possible state of the input attribute, given each state of the predictable attribute, which can later be used to predict an outcome of the predicted attribute based on ...

This is a bit different post in the series about the data mining and machine learning algorithms. This time I am honored and humbled to announce that my fourth Pluralsight course is alive. This is the Data Mining Algorithms in SSAS, Excel, and R course. besides explaining the algorithms, I also show demos in different products. This gives you even ...

Support vector machines are both, unsupervised and supervised learning models for classification and regression analysis (supervised) and for anomaly detection (unsupervised). Given a set of training examples, each marked as belonging to one of categories, an SVM training algorithm builds a model that assigns new examples into one category. An SVM ...

Data mining is the most advanced part of business intelligence. With statistical and other mathematical algorithms, you can automatically discover patterns and rules in your data that are hard to notice with online analytical processing and reporting. However, you need to thoroughly understand how the data mining algorithms work in order to ...

This is the fourth part of the fraud detection whitepaper. You can find the first part, the second part, and the third part in my previous blog posts about this topic. Data Mining Models We create multiple mining models by using different algorithms, different input data sets, and different algorithm parameters. Then we evaluate the models in ...

While working on different fraud detection projects, I developed my own approach to the solution for this problem. In my PASS Summit 2013 session I am introducing this approach. I also wrote a whitepaper on the same topic, which was generously reviewed by my friend Matija Lah. In order to spread this knowledge faster, I am starting a series of ...



