

Browse by Tags
All Tags » Data Mining (RSS)
Showing page 1 of 3 (24 total posts)

R is the hottest topic in SQL Server 2016. If you want to learn how to use it for advanced analytics, join my seminar at SQL Nexus conference on my 1st in Copenhagen. Although there is still nearly a month before the seminar, there are less than half places still available. You are also very welcome to visit my session Using R in SQL Server, Power ...

It’s been awhile since I wrote the last blog on the data mining / machine learning algorithms. I described the Neural Network algorithm. In addition, it is a good time to write another post in order to remind the readers of the two upcoming seminars about the algorithms I have in Oslo, Friday, September 2nd, 2016, and in Cambridge, Thursday, ...

I got some questions about virtual machine / notebook setup for my Business Intelligence in SQL Server 2016 DevWeek postconference workshop. I am writing this blog because I want to spread this information as quickly as possible.
There will be no labs during the seminar, no time for this. However, I will make all of the code available. ...

A neural network is a powerful data modeling tool that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform "intelligent" tasks similar to those performed by the human brain. Neural ...

Decision Trees is a directed technique. Your target variable is the one that holds information about a particular decision, divided into a few discrete and broad categories (yes / no; liked / partially liked / disliked, etc.). You are trying to explain this decision using other gleaned information saved in other variables (demographic data, ...

I am continuing with my data mining and machine learning algorithms series. Naive Bayes is a nice algorithm for classification and prediction.
It calculates probabilities for each possible state of the input attribute, given each state of the predictable attribute, which can later be used to predict an outcome of the predicted attribute based on ...

This is a bit different post in the series about the data mining and machine learning algorithms. This time I am honored and humbled to announce that my fourth Pluralsight course is alive. This is the Data Mining Algorithms in SSAS, Excel, and R course. besides explaining the algorithms, I also show demos in different products. This gives you even ...

Support vector machines are both, unsupervised and supervised learning models for classification and regression analysis (supervised) and for anomaly detection (unsupervised). Given a set of training examples, each marked as belonging to one of categories, an SVM training algorithm builds a model that assigns new examples into one category. An SVM ...

Principal component analysis (PCA) is a technique used to emphasize the majority of the variation and bring out strong patterns in a dataset. It is often used to make data easy to explore and visualize. It is closely connected to eigenvectors and eigenvalues.
A short definition of the algorithm: PCA uses an orthogonal transformation to convert ...

With the KMeans algorithm, each object is assigned to exactly one cluster. It is assigned to this cluster with a probability equal to 1.0. It is assigned to all other clusters with a probability equal to 0.0. This is hard clustering.
Instead of distance, you can use a probabilistic measure to determine cluster membership. For example, you can ...
1



